
PYTHON
FOR

DATA SCIENCE
AND

MACHINE LEARNING

BY ZEPHANIA REUBEN

Outline:
Basics

Collection Data Types

Functions

Object Oriented Python

Get started
What is Python?
 High-level,

 General purpose,

 Interpreted,

Interactive and object-oriented scripting language.

Python is designed to be highly readable

Features of Python
Easy to learn

Easy to read

Easy to maintain

A broad standard libraries

Interactive mode

Why Python?
"Why Python?“

 The answer is simple: it is powerful yet very

accessible.

 Also Python has become the most popular programming
language for data science because it allows us to forget
about the tedious parts of programming and offers us an
environment where we can quickly jot down our ideas and
put concepts directly into action.

Python installation
 To install Python open a web browser go to
https://www.python.org/downloads.

 Run the downloaded file.

 Just accept the default settings and wait until
the install is finished.

https://www.python.org/downloads

Python IDLE

 IDLE is a simple integrated development
environment (IDE) that comes with Python.

 It’s a program that allows us to type in our
programs and run them.

 You can find IDLE in the Python 3.7 folder on
your computer.

Cont...

When is started , the IDLE starts up in the
shell, which is an interactive window where we
can type in Python code and see the output in
the same window.

Most of the time we will want to open up a
new window and type the program in there.

Jupyter Notebook

 We can use another Python platform called
Anaconda.

It includes different of popular data science
packages and virtual environment manager..

https://www.anaconda.com/download/

Cont..
 Jupyter Notebook Is an open source web
application interactive and exploratory computing.

 It allows us to create and share documents that
contain live code, equations, visualizations and
explanatory text.

We will work in Jupyter notebooks for all
practices

Running Python
Python program can be executed in different

modes such as: -

 Interactive mode

Script mode

Python identifiers
Variable names can contain letters, numbers,
and the underscore.

 Variable names cannot contain spaces

Variable names cannot start with a number.

 Case matters—for instance, temp and Temp
are different.

Python keywords

and is not exec lambda for def if return def

import try elif in print raise while else with except

yield assert finally or break pass class from continue global

Lines and Indentation
 Python provides no braces to indicate blocks of
code for class and function definitions or flow
control.
Blocks of code are denoted by line indentation.
The number of spaces in the indentation is
variable.
All statements within the block must be indented
the same amount.

Quotation in Python
 Python accepts single ('), double (") and triple
(''' or """) quotes to denote string literals, as
long as the same type of quote starts and ends
the string.

The triple quotes are used to span the string
across multiple lines.

Comments in Python
 A hash sign (#) that is not inside a string
literal begins a comment.

 All characters after the # and up to the end of
the physical line are part of the comment and
the Python interpreter ignores them.

Printing

The print function requires parenthesis around its arguments.

 To print several things at once, separate them by commas.
Python will automatically insert spaces between them.

Python will insert a space between each of the arguments of
the print function.

Cont…
There is an optional argument called sep, short
for separator, that we can use to change that space
to something else.

For example, using sep='##' would separate the
arguments by two pound signs.

The print function will automatically advance to
the next line.

Variable Types
Variables are nothing but reserved memory locations to
store values

Based on the data type of a variable, the interpreter
allocates memory and decides what can be stored in the
reserved memory.

Therefore, by assigning different data types to variables,
you can store integers, decimals, or characters in these
variables.

Standard data types in Python
Python has five standard data types:

Numbers

String

List

Tuple

Dictionary

Python numbers
Number data types store numeric values. Number

objects are created when you assign a value to them.

Python supports four different numerical types:-

 int (signed integers)

long (long integers, they can also be represented in octal
and hexadecimal)

float (floating point real values)

complex (complex numbers)

Python strings
Strings in Python are identified as a contiguous set of
characters represented in the quotation marks.

Python allows for either pairs of single or double quotes.

Subsets of strings can be taken using the slice operator ([]
and [:])

The plus (+) sign is the string concatenation operator and
the asterisk (*) is the repetition operator.

Python Tuples
A tuple is another sequence data type that is similar to the
list.

 A tuple consists of a number of values separated by
commas.

The main differences between lists and tuples are:

 Lists are enclosed in brackets ([]) and their elements and
size can be changed, while tuples are enclosed in parentheses
(()) and cannot be updated.

Tuples can be thought of as read-only lists.

Python Dictionary
 Python's dictionaries consist of key-value pairs.

 A dictionary key can be almost any Python type,
but are usually numbers or strings. Values, on the
other hand, can be any arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and
values can be assigned and accessed using square
braces ([]).

Data Type Conversion
To convert between types, we simply use the
type name as a function.

There are several built-in functions to perform
conversion from one data type to another.

Example: int(), str().

Python Basic Operators
Arithmetic Operators

Comparison (Relational) Operators

Assignment Operators

Logical Operators

Membership Operators

Identity Operators

Python Arithmetic Operators
Assume variable a holds 10 and b holds 20, then:

Operator Example

+ Addition a+b=30

- Subtraction a-b=10

* Multiplication a*b=200

/ Division a/b=2

% Modulus b%a=0

** Exponent a**b=10 to the power of 20

Python Comparison Operator
These operators compare the values on either
sides of them and decide the relation among
them. They are also called Relational operators.

Assume variable a holds 10 and variable b
holds 20, then:

Cont…
Operator Example

== (a==b) is not true

!= (a!=b) is true

<> (a<>b) is true. This is similar to !=

> (a>b) is not true

< (a<b) is true

>= (a>=b) is not true

<= (a<=b) is true

Python Assignment Operators
Assume variable a holds 10 and variable b holds 20,then:-

Operator Example

= c=a+b assigns value of a + b into c

+= Add AND c+= a is equivalent to c=c+a

-= Subtract AND c-= a is equivalent to c=c-a

= Multiply c= a is equivalent to c=c*a

/= Divide AND c/= a is equivalent to c=c/a

%= Modulus AND c%= a is equivalent to c=c%a

= Exponent AND c= a is equivalent to c=c**a

Python Logical Operators
There are following logical operators supported by Python
language. Assume variable a holds 10 and variable b holds 20 then:

Operator Example

and, logical AND (a and b) is true

or, logical OR (a or b) is true

not , logical NOT Not (a and b) is false

Python Membership Operators
Python’s membership operators test for membership in a
sequence, such as strings, lists, or tuples. There are two membership
operators as explained below:

Operator Example

in x in y , here , in results in a 1 if x is a member of
sequence y

not in x in not y , here , not results in a 1 if x is not a
member of sequence y

Python Identity Operators
Identity operators compare the memory locations of two
objects. There are two Identity operators as explained
below:

Operator Example

is x is y, here is results in 1 if id(x) equals id(y).

is not x is not y, here is not results in 1 if id(x) is not equal to id(y).

DECISION MAKING
Decision making is anticipation of conditions occurring while
execution of the program and specifying actions taken according to the
conditions.

Decision structures evaluate multiple expressions which
produce TRUE or FALSE as outcome.

Python programming language assumes any non-zero and non-
null values as TRUE, and if it is either zero or null, then it is assumed
as FALSE value.

Cont…
 Python programming language provides following types
of decision making statements.

Statement Description

if statement if statement consists of a Boolean expression followed by one or more
statements.

if…else statement if statement can be followed by an optional else statement, which executes
when the Boolean expression is FALSE

Nested if
statement

You can use one if or else if statement inside another if or else if statement(s)

LOOPS
In general, statements are executed sequentially: The first
statement in a function is executed first, followed by the second,
and so on.

 There may be a situation when you need to execute a block of
code several number of times.

A loop statement allows us to execute a statement or group of
statements multiple times.

Cont…
Python programming language provides following types of
loops to handle looping requirements.

Loop type Description

while loop Repeats a statement or group of statements while a given condition is TRUE. It
tests the condition before executing the loop body.

for loop Executes a sequence of statements multiple times and abbreviates the code
that manages the loop variable.

nested loop You can use one or more loop inside any another while , for or do…while loop

LOOP CONTROL STATEMENT
Loop control statements change execution
from its normal sequence. When execution
leaves a scope, all automatic objects that were
created in that scope are destroyed.

Python supports the following control
statements.

Cont…
Control
Statement

Description

continue Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating

break Terminates the loop statement and transfers execution
to the statement immediately following the loop.

pass The pass statement in Python is used when a statement
is required syntactically but you do not want any
command or code to execute.

COLLECTION DATA TYPES
Lists
 The list is a most versatile datatype available in
Python which can be written as a list of comma-
separated values (items) between square brackets.

Important thing about a list is that items in a list
need not be of the same type.

Creating a list is as simple as putting different
comma-separated values between square brackets.

Accessing Values in Lists
list1 = ['physics', 'chemistry', 1997, 2000]

list2 = [1, 2, 3, 4, 5, 6, 7]

print("list1[0]: ", list1[0])

print("list2[1:5]: ", list2[1:5])

Basic List Operation
Lists respond to the + and * operators much like strings;
they mean concatenation and repetition here too, except
that the result is a new list, not a string.

Python Expression Results Description

Len([1,2,3]) 3 Length

[1,2,3]+[4,5,6] [1,2,3,4,5,6] Concatenation

[“A”]*4 [‘A’,’A’,’A’,’A’] Repetition

3 in [1,2,3] True Membership

Indexing and Slicing
Because lists are sequences, indexing and slicing work the
same way for lists as they do for strings.

Assume the following input:

L=[‘CIVE’, ’Cive’, ‘CIVE’]
Python Results Description

L[2] ‘CIVE’ Offsets start at zero

L[-2] ‘Cive’ Negative count from the
right

L[1:] [‘Cive’ , ‘CIVE’] Slicing fetches sectors

Built-in List Functions and Methods
Python includes the following list functions:

Function Description

cmp(list1,list2) Compares elements of both lists.

len(list) Gives the total length of the list

max(list) Returns item from the list with max
value.

min(list) Returns item from the list with min
value.

list(seq) Converts a tuple into list

Cont…
Python includes the following list methods:
Methods Description

list.append(obj) Appends object obj to list

list.count(obj) Returns count of how many times obj occurs in list

list.extend(seq) Appends the contents of seq to list

list.index(obj) Returns the lowest index in list that obj appears

list.insert(index,obj) Inserts object obj into list at offset index

list.pop(obj=list[-1]) Removes and returns last object or obj from list

list.remove(obj) Removes object obj from list

List.reverse() Reverses objects of list in place

Tuples
A tuple is a sequence of immutable Python objects.
Tuples are sequences, just like lists.

The differences between tuples and lists are, the
tuples cannot be changed unlike lists and tuples
use parentheses, whereas lists use square brackets.

Accessing Values In Tiples
To access values in tuple, use the square brackets for
slicing along with the index or indices to obtain value
available at that index.

Example:

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print("tup1[0]: ",tup1[0])

print("tup2[1:5]: ", tup2[1:5])

Dictionary
Dictionary this is a collection data type which have pairs
of keys and values.

Each key is separated from its value by a colon (:), the
items are separated by commas, and the whole thing is
enclosed in curly braces.

Keys are unique within a dictionary while values may not
be. The values of a dictionary can be of any type, but the
keys must be of an immutable data type such as strings,
numbers, or tuples.

Accessing Values In Dictionary
An empty dictionary without any items is written with
just two curly braces, like this: {}.

To access dictionary elements, you can use the familiar
square brackets along with the key to obtain its value.

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print("dict['Name']: ", dict['Name'])

print("dict['Age']: ", dict['Age'])

Built-in Dictionary Function and Methods
Python includes the following dictionary functions:-

Function Description

cmp(dict1,dict2) Compares elements of both dict

len(dict) Gives the total length of the dictionary. This would be equal to
the number of items in the dictionary

str() Produces a printable string representation of a dictionary

type(variable) Returns the type of the passed variable. If passed variable is
dictionary, then it would return a dictionary type

Cont…
Python includes the following dictionary methods:
Method Description

dict.clear() Removes all elements of dictionary dict

dict.copy() Returns a shallow copy of dictionary dict

dict.fromkeys() Create a new dictionary with keys from seq and values set to value.

dict.get(key,default=None) For key key, returns value or default if key not in dictionary

dict.has_key(key) Returns true if key in dictionary dict, false otherwise

dict.values() Returns list of dictionary dict’s values

dict.items() Returns a list of dict's (key, value) tuple pairs

dict.keys() Returns list of dictionary dict's keys

FUNCTIONS
A function is a block of organized, reusable
code that is used to perform a single, related
action.

As you already know, Python gives us many
built-in functions such as print(), but we can
also create our own functions. These functions
are called user-defined functions

Defining a function
Begin with the keyword def followed by the function name and
parentheses (()).

Any input parameters should be placed within these parentheses.
We can also define parameters inside these parentheses.

The code block within every function starts with a colon (:) and is
indented.

The statement return [expression] exits a function, optionally
passing back an expression to the caller. A return statement with no
arguments is the same as return None.

Calling a function
Defining a function only gives it a name, specifies
the parameters that are to be included in the
function and structures the blocks of code.

Once the basic structure of a function is finalized,
you can execute it by calling it from another
function or directly from the Python prompt.

Function Arguments
A Python function can be called by using the
following types of formal arguments:

Required arguments

Keyword arguments

Default arguments

Variable-length arguments

The return statement
The statement return [expression] exits a
function, optionally passing back an expression
to the caller.

 A return statement with no arguments is the
same as return None.

Scope of Variables
There are two basic scopes of variables in Python:

Global variables

Local variables

Global Vs. Local Variables
Local variables

These are variables that are defined inside a
function body.

Global variables.

These are variables which are declared outside a
function.

OBJECT ORIENTED PROGRAMMING
 Object oriented programming is a very popular
paradigm of programming, where objects are created
using classes, which are actually the focal point of
OOP .

The class describes what the object will be, but is
separate from the object itself.

Overview of OOP Terminologies
Class
Object
Attribute
Method
Constructor
Inheritance
Polymorphism

Destroying Objects(Garbage Collection)
Python deletes unneeded objects (built-in types or
class instances) automatically to free the memory
space.

The process by which Python periodically reclaims
blocks of memory that no longer are in use is termed
Garbage Collection.

.

Methods Overriding

You can always override your parent class
methods. One reason for overriding parent's
methods is because you may want special or
different functionality in your subclass.

PAUSE

THANK YOU

